## 5 days at $30^{\circ} \mathrm{C}$



Figure S1 All heterochromatic loci contain autonomously replicating sequence (ARS). To examine the ARS activity of heterochromatic replication origins, fragments corresponding to ars3.OK ${ }^{1}$ in the pericentromere ( $d g$ ) and ars $2 P^{2}$ in the mat locus, which had been previously described, were PCRcloned into pYC1 1 carrying LEU2 gene. For the subtelomeric replication
origin, a fragment that contains multiple AT-stretches characteristic in fission yeast replication origins at 21 kb from the right telomere of chromosome 2 was PCR-cloned into pYC11. Each plasmid was introduced into HM123 ( $h^{-}$leu1-32) followed by 5 days incubation at $30^{\circ} \mathrm{C}$ and pictures were taken. Ars2004 and vector serve as positive and negative controls, respectively.

-o-nonARS - -ars2004 -m-pericentromere -m-matK - --subtelomere
swi6-W104A


Figure S2 Swi6 promotes early replication at the pericentromere and the mat locus in a chromo-domain dependent manner. To express Swi6-W104A mutant protein from the endogenous swi6 ${ }^{+}$promoter, the swi ${ }^{+}$coding sequence with its potential promoter and terminator regions was first cloned into pBluescript (pAL2pBK), and a hygr cassette was introduced into the pAL2pBK plasmid (pAL2pBK-H). The W104A mutation was introduced using site-directed mutagenesis and sequence was confirmed. The resultant plasmid (pAL2W104ApBK-H) was cleaved with Hpal for introduction into downstream of the swi6 locus in swi64 cells, and the transformants were isolated using
medium containing hygromycin. The expression of Swi6-W104A was confirmed by western blotting with anti-Swi6 antibody (data not shown). (a) The point mutation swi6-W104A impairs the silencing at the silent mat locus. Silencing of a ura4 ${ }^{+}$marker inserted at the silent mat locus was examined by growth on selective media. Ten-fold-diluted cultures of indicated strains were plated onto nonselective medium (NS), medium containing 5-FOA (FOA) and medium lacking uracil (-ura). (b) Chromo-domain of Swi6 is required for early replication at the pericentromere and the mat locus. Replication kinetics in swi6-W104A cells was analyzed as in Fig. 1b.


Figure S3 Replication delays at the pericentromere and the mat locus in $d f p 1-2 E$ cells. The endogenous $d f p 1^{+}$gene was replaced with
dfp1-2E

dfp1-2E and replication kinetics of indicated loci was examined as described in Fig. 1b.

## -onnonARS - -ars2004 -m-pericentromere -m-matK - -subtelomere <br> swi6 $\Delta$ dfp1-3A-CFP-2CD



Figure S4 Tethering of Dfp1-3A restores early replication at the pericentromere and the mat locus in swi64 cells. Dfp1-3A was fused with CFP and two tandem copies of chromo-domain (CD) of Swi6 and expressed from the native dfp1+ promoter in swi64 cells. Replication kinetics of indicated loci were analyzed as described in Fig. 1b.

## swi6 4 clr4 4



Figure S5 Deletion of the clr4+ in swi64 background restores early replication at the pericentromere but not at the mat locus. Replication
kinetics of indicated loci in swi64c/r40 double mutant cells were analyzed as described in Fig. 1b.


Figure S6 Initiation of replication at the subtelomeric ARS is inhibited after pre-RC formation in both wild type and swi64 cells. ChIP samples in Fig.

2 b-g were examined by quantitative real-time PCR using the subtelomeric primers shown in Fig. 1a. Error bars represent standard deviations ( $n=3$ ).

## Supplementary References

1. Smith, J. G. et al. Replication of centromere II of Schizosaccharomyces pombe. Mol. Cell Biol. 15, 5165-5172 (1995).
2. 

Olsson, T., Ekwall, K. \& Ruusala, T. The silent P mating type locus in fission yeast contains two autonomously replicating sequences. Nucleic Acids Res. 21, 855-861 (1993).

Supplementary Table 1 S. pombe strains used in this study

| Strain | Genotype | Figures and |  |
| :--- | :--- | :--- | :--- | :--- |
| HM123 | $h^{-}$ | leu1-32 | Supplementary figures |
| HM664 | $h^{-}$ | ura4-D18::ura4 $4^{+}$nmt $1-$ TK $^{+}$ | S1 |
| HM683 | $h^{+}$ | ura4-D18::ura4 ${ }^{+} n m t 1-$ TK |  |

Supplementary Table 2 Primers used in this study

| Locus | Name | Sequence | Source |
| :--- | :--- | :--- | :--- |
| ars2004 | ars2004-66-F | 5'-CGGATCCGTAATCCCAACAA-3' |  |
| nonARS | ars2004-66-R | 5'-TTTGCTTACATTTTCGGGAACTTA-3' | Hayashi et al., 2007 |
|  | nonARS-70-F | 5'-TACGCGACGAACCTTGCATAT-3' |  |
| nonARS-70-R | 5'-TTATCAGACCATGGAGCCCATT-3' | Hayashi et al., 2007 |  |
|  | dg-108-F | 5'-TCCAAATGTCGCATGAACACTC-3' |  |
| mat K locus | dg-108-R | 5'-CTTTTTTGGGAATACATTGGGTTT-3' | Hayashi et al., 2007 |
|  | matK-108-F | 5'-TCTTCCCTGCGTTGGACTTC-3' |  |
| subtelomere | matK-108-R | 5'-CACCCTACCATCCGTGTTACCT-3' | This study |
|  | TEL-59-F | 5'-CAGAAGAGACTACAGAGGCGGTTT-3' | This study |

