

DOI: 10.1038/ncb1845

5 days at 30°C

dgmatKsubTELars2004vectorImage: state state

Figure S1 All heterochromatic loci contain autonomously replicating sequence (ARS). To examine the ARS activity of heterochromatic replication origins, fragments corresponding to ars3.0K¹ in the pericentromere (*dg*) and ars2PR² in the *mat* locus, which had been previously described, were PCR-cloned into pYC11 carrying *LEU2* gene. For the subtelomeric replication

origin, a fragment that contains multiple AT-stretches characteristic in fission yeast replication origins at 21 kb from the right telomere of chromosome 2 was PCR-cloned into pYC11. Each plasmid was introduced into HM123 (*h*⁻ *leu1-32*) followed by 5 days incubation at 30°C and pictures were taken. *Ars2004* and vector serve as positive and negative controls, respectively.

Figure S2 Swi6 promotes early replication at the pericentromere and the *mat* locus in a chromo-domain dependent manner. To express Swi6-W104A mutant protein from the endogenous *swi6*⁺ promoter, the *swi6*⁺ coding sequence with its potential promoter and terminator regions was first cloned into pBluescript (pAL2pBK), and a *hyg*^r cassette was introduced into the pAL2pBK plasmid (pAL2pBK-H). The W104A mutation was introduced using site-directed mutagenesis and sequence was confirmed. The resultant plasmid (pAL2W104ApBK-H) was cleaved with *Hpa*l for introduction into downstream of the *swi6* locus in *swi6* cells, and the transformants were isolated using

medium containing hygromycin. The expression of Swi6-W104A was confirmed by western blotting with anti-Swi6 antibody (data not shown). (a) The point mutation *swi6-W104A* impairs the silencing at the silent *mat* locus. Silencing of a *ura4*⁺ marker inserted at the silent *mat* locus was examined by growth on selective media. Ten-fold-diluted cultures of indicated strains were plated onto nonselective medium (NS), medium containing 5-FOA (FOA) and medium lacking uracil (-ura). (b) Chromo-domain of Swi6 is required for early replication at the pericentromere and the *mat* locus. Replication kinetics in *swi6-W104A* cells was analyzed as in Fig. 1b.

Figure S3 Replication delays at the pericentromere and the *mat* locus in dfp1-2E cells. The endogenous $dfp1^+$ gene was replaced with

dfp1-2E and replication kinetics of indicated loci was examined as described in Fig. 1b.

Figure S4 Tethering of Dfp1-3A restores early replication at the pericentromere and the *mat* locus in *swi6* Δ cells. Dfp1-3A was fused with CFP and two tandem copies of chromo-domain (CD) of Swi6 and expressed from the native *dfp1*⁺ promoter in *swi6* Δ cells. Replication kinetics of indicated loci were analyzed as described in Fig. 1b.

Figure S5 Deletion of the $clr4^+$ in $swi6\Delta$ background restores early replication at the pericentromere but not at the *mat* locus. Replication

kinetics of indicated loci in $swi6\Delta clr4\Delta$ double mutant cells were analyzed as described in Fig. 1b.

Figure S6 Initiation of replication at the subtelomeric ARS is inhibited after pre-RC formation in both wild type and $swi6\Delta$ cells. ChIP samples in Fig.

2 **b-g** were examined by quantitative real-time PCR using the subtelomeric primers shown in Fig. 1**a**. Error bars represent standard deviations (n=3).

Supplementary References

- 1. Smith, J. G. et al. Replication of centromere II of *Schizosaccharomyces pombe. Mol. Cell Biol.* **15**, 5165-5172 (1995).
- Olsson, T., Ekwall, K. & Ruusala, T. The silent P mating type locus in fission yeast contains two autonomously replicating sequences. *Nucleic Acids Res.* 21, 855-861 (1993).

Supplementary Table 1 S. pombe strains used in this study

Strain	Canatura		Figures and
Suam	Gend	лурс	Supplementary figures
HM123	h^{-}	leu1-32	S1
HM664	h^{-}	$ura4-D18::ura4^+nmt1-TK^+$	used for transformation
HM683	$h^{\scriptscriptstyle +}$	$ura4-D18::ura4^+nmt1-TK^+$	used for transformation
HM1182	h^{90}	cdc25-22 ura4-D18:: ura4 ⁺ nmt1-TK ⁺ his2 Kint2::ura4 ⁺	1 b , c , d , 3 d , S3
HM1183	h^{90}	cdc25-22 ura4-D18:: ura4 ⁺ nmt1-TK ⁺ his2 Kint2::ura4 ⁺ swi6∆::kanMX6	1 b , c , d , 3 d , 4 c
HM1418	h^{-}	ura4-D18::ura4 ⁺ nmt1-TK ⁺ lys1 <i>A</i> ::(dfp1 ⁺ -CFP-2CD hphMX6)	transformant
HM1420	h^{90}	cdc25-22 ura4-D18:: ura4 ⁺ nmt1-TK ⁺ his2 Kint2::ura4 ⁺ swi6A::kanMX6 lys1A::(dfp1 ⁺ -CFP-2CD hphMX6)	4 a , b , c
HM1423	h^{90}	cdc25-22 ura4-D18:: ura4 ⁺ nmt1-TK ⁺ his2 Kint2::ura4 ⁺ lys1A::(dfp1 ⁺ -CFP-2CD hphMX6)	4 d
HM1460	h^{-}	ura4-D18::ura4 ⁺ nmt1-TK ⁺ lys1A::(CFP-2CD hphMX6)	transformant
HM1467	h^{90}	cdc25-22 ura4-D18:: ura4 ⁺ nmt1-TK ⁺ his2 Kint2::ura4 ⁺ swi6A::kanMX6 lys1A::(CFP-2CD hphMX6)	4 a , b , c
HM1471	h^{90}	cdc25-22 ura4-D18:: ura4 ⁺ nmt1-TK ⁺ his2 Kint2::ura4 ⁺ lys1A::(CFP-2CD hphMX6)	4 d
HM1482	h^{90}	cdc25-22 ura4-D18:: ura4 ⁺ nmt1-TK ⁺ his2 Kint2::ura4 ⁺ swi6A::kanMX6 clr4A::kanMX6	S5
HM1588	h^{90}	cdc25-22 ura4-D18:: ura4 ⁺ nmt1-TK ⁺ Flag-cdc45::kanMX6 his2 Kint2::ura4 ⁺	2 c , f , g , S6
HM1589	h^{90}	cdc25-22 ura4-D18:: ura4⁺nmt1-TK⁺ Flag-cdc45::kanMX6 his2 Kint2::ura4⁺ swi6∆::kanMX6	2 c , f , g , S6
HM1590	h^{90}	cdc25-22 ura4-D18:: ura4 ⁺ nmt1-TK ⁺ psf2-5Flag::kanMX6 his2 Kint2::ura4 ⁺	2 b , e , S6
HM1591	h^{90}	cdc25-22 ura4-D18:: ura4 ⁺ nmt1-TK ⁺ psf2-5Flag::kanMX6 his2 Kint2::ura4 ⁺ swi6A::kanMX6	2 b , e , S6
HM1826	$h^{\scriptscriptstyle +}$	ura4-D18::ura4 ⁺ nmt1-TK ⁺ dfp1-3A::kanMX6	transformant
HM1828	$h^{\scriptscriptstyle +}$	ura4-D18::ura4 ⁺ nmt1-TK ⁺ dfp1-2E::kanMX6	transformant
HM1841	h^{90}	cdc25-22 nda4-108 ura4-D18::ura4 ⁺ nmt1-TK ⁺ sld3-5Flag::kanMX6 his2 Kint2::ura4 ⁺	2 d , S6
HM1843	h^{90}	cdc25-22 nda4-108 ura4-D18::ura4 ⁺ nmt1-TK ⁺ sld3-5Flag::kanMX6 his2 Kint2::ura4 ⁺ swi6∆::kanMX6	2 d , S6
HM1853	h^{90}	cdc25-22 ura4-D18::ura4 ⁺ nmt1-TK ⁺ dfp1-3A::kanMX6 his2 Kint2::ura4 ⁺	3 c , d
HM1857	h^{90}	cdc25-22 ura4-D18::ura4 ⁺ nmt1-TK ⁺ dfp1-2E::kanMX6 his2 Kint2::ura4 ⁺	S3
HM1899	$h^{\scriptscriptstyle +}$	ura4-D18::ura4 ⁺ nmt1-TK ⁺ lys1A::(dfp1-3A-CFP-2CD hphMX6)	transformant
HM1934	h^{90}	cdc25-22 ura4-D18::ura4+nmt1-TK ⁺ his2 Kint2::ura4 ⁺ swi6A::kanMX6 lys1A::(dfp1-3A-CFP-2CD hphMX6)	S4
HM1994	h^{90}	ura4-DS/E Kint2::ura4 ⁺ swi6Δ::kanMX6	S2a
HM2608	h^{90}	cdc25-22 ura4-D18::ura4+nmt1-TK ⁺ his2 Kint2::ura4 ⁺ swi6∆::kanMX6::(swi6-W104A hphMX6)	S2b
HM2613	h^{90}	ura4-DS/E Kint2::ura4+ swi6A::kanMX6::(swi6-W104A hphMX6)	S2a
TNF2518	h^{90}	ura4-DS/E Kint2::ura4+	S2a

Locus	Name	Sequence	Source	
ama 2 004	ars2004-66-F	5'-CGGATCCGTAATCCCAACAA-3'	Howerhi et al. 2007	
ars2004	ars2004-66-R	5'-TTTGCTTACATTTTCGGGAACTTA-3'	Hayashi <i>et al.</i> , 2007	
nonADS	nonARS-70-F	5'-TACGCGACGAACCTTGCATAT-3'	Hayashi <i>et al</i> ., 2007	
nonAKS	nonARS-70-R	5'-TTATCAGACCATGGAGCCCATT-3'		
de (menicenteren ene)	dg-108-F	5'-TCCAAATGTCGCATGAACACTC-3'	Hayashi <i>et al</i> ., 2007	
ag (pericentromere)	dg-108-R	5'-CTTTTTTGGGAATACATTGGGTTT-3'		
wat Vlanus	matK-108-F	5'-TCTTCCCTGCGTTGGACTTC-3'	This study	
mai k locus	matK-108-R	5'-CACCCTACCATCCGTGTTACCT-3'		
	TEL-59-F	5'-CAGAAGAGACTACAGAGGCGGTTT-3'	This study	
sudielomere	TEL-59-R	5'-GGATGCCTTATCTGCGACCA-3'		

Supplementary Table 2 Primers used in this study