

Coomassie

Supplemental Figure S1. Two-dimensional gel analysis of methylated proteins. After incubation with His-Set13 and [³H] AdoMet, labeled proteins in the $\Delta set13$ nuclear extract were separated first in a gel containing 6% (v/v) acetic acid, 8 M urea, and 0.5% Triton X-100 (AUT) and then on a gel containing 6% (v/v) acetic acid and 1.5 M urea, with 0.15% cetyltrimethylammonium bromide in the upper reservoir buffer. ³H-labeled proteins were detected by autoradiography (top), and the total proteins were detected by Coomassie staining (bottom). One spot of ³H-labeled protein in the autoradiograph and the corresponding spot in the Coomassie-stained gel are indicated by arrowheads and a dotted circle.

Supplemental Figure S2. Rpl42 methylation-defective mutants show no sensitivity to other translational inhibitors. Five-fold dilutions of each strain were plated onto YEA alone or YEA containing anisomycin (A), paromomycin (B), G418 (C), or hygromycin (D) at the indicated concentrations, and further cultured for 3 days.

Supplemental Figure S3. Polysome analysis of wild-type and Rpl42 methylation-defective mutant cells. Wild-type (*A*), $\Delta set13$ (*B*), and $rpl42^{K55R}$ (*C*) cells were grown in YEA medium at 30°C or 15°C. Lysates prepared from these cells were loaded onto 5% to 45% sucrose gradients, and fractionated by centrifugation for 2 h at 36,000 rpm. The gradients were fractionated using a Piston Gradient Fractionator (Biocomp), and monitored by UV at 254 nm. The resultant absorbance profiles are shown, beginning with the top of the gradient on the left. The positions of the 40S, 60S, and 80S ribosomal species are indicated.

Supplemental Figure S5. Transcriptional levels of temperature-responsive genes during cold stress. Real-time RT-PCR was performed to measure the level of mRNA encoding *ctt1* (cytoplasmic catalase), *gpd1* (glycerol-3 phosphate dehydrogenase), or *rpl1101* (60S ribosomal protein L11), after shifting the temperature from 30°C to 15°C. The strain backgrounds were wild-type (blue), $\Delta set13$ (red), or *rpl42^{K55R}* (orange). The stress-responsive expression of these genes in wild-type cells were previously described (Chen et al. *Mol Biol Cell* 14: 214-229, 2003). The relative amounts of these mRNAs were calculated and normalized to the level of *act1* mRNA.

Product ^a (ORF ^b)	Substrate	Localization ^c	S. cerevisiae (ORF) ^{d, e}	M. musculus ^f	Other domains	References
Set1 (SPCC306.04c)	Histone H3K4	Nuc	Set1 (YHR119w)	Mll2	RRM	S1
Set2 (SPAC29B12.02c)	Histone H3K36	Nuc	Set2 (YJL168c)	Whsc111	SRI	S2
Set3 (SPAC22E12.11c)	Unknown	Nuc	Set3 (YKR029c) Set4 (YJL105w)	M115	PHD	
Clr4 (SPBC428.08c)	Histone H3K9	Nuc	None	Suv39h1/2	chromo	S 3
Set5 (SPCC1739.05)	Ef1α	Nuc/Cyt	Set5 (YHR207c)	Hskm-B		S4
Set6 (SPBP8B7.07c)	Unknown	Nuc/Cyt	None	Zym1	zf-MYND	
Set7 (SPCC297.04c)	Unknown	Cyt	None	G9a, Glp1		
Set8 (SPAC3C7.09)	Unknown	Nuc/Cyt	YHL039w Rkm1 (YPL208w)	XP_134310	similar to Set10	
Set9 (SPCC4B3.12)	Histone H4K20	Nuc	None	Suv4-20h1/2		S5
Set10 (SPBC1709.13c)	Rpl23	Nuc	YHL039w Rkm1 (YPL208w)	NP_082538	similar to Set10	S4, S6
Set11 (SPCC1223.04c)	Rpl12 K3	Nuc	Rkm2 (YDR198c)	C21orf18		S7, S8
Set12 (SPBC16C6.01c)	Unknown	Nuc/Cyt	None	(XP_134310)		
Set13 (SPAC688.14)	Rpl42 K55	Nuc	Set7 (YDR257c)	SETD6		This study, S9

Supplemental Table S1	SET domain proteins in Sch	vizosaccharomyces pombe
-----------------------	----------------------------	-------------------------

^a The *S. pombe* SET domain proteins are named as reported previously (S1, S10). ^b *S. pombe* geneDB (http://www.genedb.org/genedb/pombe/).

^c S11.
^d Saccharomyces Genome Database (http://www.yeastgenome.org/).
^{e, f} The most related proteins in S. cerevisiae and M. musculus are listed with reference to S5 and S10. No apparent ortholog for S. cerevisie Set6 (YPL165c) or YBR030w has been identified in the S. pombe genome.

Supplemental References

- S1 Noma, K and Grewal, SI. (2002) *Proc Natl Acad Sci* **99 Suppl 4:** 16438-16445.
- S2 Morris, SA., Shibata, Y, Noma, K, Tsukamoto, Y, Warren, E, Temple, B, Grewal, SI, and Strahl, BD. (2005) *Eukaryot. Cell* 4: 1446-1454.
- S3 Nakayama, J, Rice, JC, Strahl, BD, Allis, CD, and Grewal, SI. (2001) Science 292: 110-113.
- S4 Shirai, A, Matsuyama, A, Yashiroda, Y, Hashimoto, A, Kawamura, Y, Arai, R, Komatsu, Y, Horinouchi, S, and Yoshida, M. (2008) *J Biol Chem* 283: 10745-10752.
- S5 Sanders, SL, Portoso, M, Mata, J, Bahler, J, Allshire, RC, and Kouzarides, T. (2004) Cell 119: 603-614.
- S6 Porras-Yakushi, TR, Whitelegge, JP, Miranda, TB, and Clarke, S. (2005) J Biol Chem 280: 34590-34598.
- S7 Sadaie, M, Shinmyozu, K, and Nakayama, J. (2008) *J Biol Chem* 283: 7185-7195.
- S8 Porras-Yakushi, TR, Whitelegge, JP, and Clarke, S. (2006) J Biol Chem 281: 35835-35845.
- S9 Webb, KJ, Laganowsky, A, Whitelegge, JP, and Clarke, SG. (2008) *J Biol Chem* 283: 35561-35568.
- S10 Schotta, G, Lachner, M, Sarma, K, Ebert, A, Sengupta, R, Reuter, G, Reinberg, D, and Jenuwein, T. (2004) Genes Dev 18: 1251-1262.
- S11 Matsuyama, A, Arai, R, Yashiroda, Y, Shirai, A, Kamata, A, Sekido, S, Kobayashi, Y, Hashimoto, A, Hamamoto, M, Hiraoka, Y. et al. (2006) Nat Biotech 24: 841-847.

Peptide	Strain	Time (min)	Observed mass	Experimental mass	Theoretical mass ^c	Difference	Peptide#
Finnigan LTQ (Thermo Fisher Scientific)							
QSGFGGQT <u>K</u> PVFHK	Wild type	7.28	511.77 (MH ³⁺) ^a	1533.30 (MH ⁺)	1517.79 (MH ⁺)	+15.51	23
(47~60 aa)	$\Delta set 13$	7.23	507.19 (MH ³⁺) ^a	1519.56 (MH+)		+1.77	34
E*SGFGGQT <u>K</u> PVFHK	Wild type	8.12	506.24 (MH ³⁺) ^a	1516.72 (MH+)	1500.75 (MH+)	+15.97	32
(47~60 aa) E*: pyroE	$\Delta set 13$	8.12	501.45 (MH ³⁺) ^a	1502.35 (MH+)		+1.60	45
NanoFrontierLD (HITACHI)							
QSGFGGQT <u>K</u> PVFHK	Wild type	23.0	1532.04 (MH ⁺) ^b	1532.04 (MH+)	1517.79 (MH+)	+14.25	n.d.
(47~60 aa)	•••		766.53 (MH ²⁺) ^b	1532.06 (MH ⁺)		+14.27	n.d.
			511.36 (MH ³⁺) ^b	1532.08 (MH+)		+14.29	n.d.
			383.78 (MH ⁴⁺) ^b	1532.10 (MH+)		+14.31	n.d.
	$\Delta set 13$	23.2	1517.99 (MH ⁺) ^b	1517.99 (MH+)		+0.20	n.d.
			759.51 (MH ²⁺) ^b	1518.02 (MH+)		+0.23	n.d.
			506.68 (MH ³⁺) ^b	1518.04 (MH+)		+0.25	n.d.
			380.27 (MH ⁴⁺) ^b	1518.06 (MH+)		+0.27	n.d.
E*SGFGGQT <u>K</u> PVFHK	Wild type	24.9	1515.00 (MH ⁺) ^b	1515.00 (MH+)	1500.75 (MH+)	+14.25	n.d.
(47~60 aa) E*: pyroE			758.01 (MH ²⁺) ^b	1515.03 (MH+)		+14.28	n.d.
			505.68 (MH ³⁺) ^b	1515.05 (MH+)		+14.30	n.d.
	∆set13	25.2	1500.97 (MH ⁺) ^b 751.00 (MH ²⁺) ^b 501.01 (MH ³⁺) ^b	1500.97 (MH ⁺) 1501.00 (MH ⁺) 1501.02 (MH ⁺)		+0.22 +0.25 +0.27	n.d. n.d. n.d.

Supplemental Table S2. LC-MS analysis of Rpl42

^a Average of at least three independently observed masses. ^b Representative masses at the indicated elution time. ^c MH⁺¹(mono)

Site	Peptide sequence	Methyl#	Observed mass	Experimental mass	Theoretical mass ^b	Difference	wild-type# ^c	$\Delta set13\#^{c}$
K15	TYCPG <u>K</u> NCR	Tri	599.60 (MH ²⁺) ^a	1198.19 (MH+)	1155.50 (MH+)	+42.69	2 (1)	2 (2)
K78	LECVSC <u>K</u>	Mono	455.33 (MH ²⁺) ^a	909.65 (MH ⁺)	895.39 (MH+)	+14.26	1 (2)	1(1)
	LECVSC <u>K</u> YK	Di	608.18 (MH ²⁺) ^a	1215.35 (MH+)	1187.41 (MH+)	+27.94	1 (0)	
	_	Tri	614.92 (MH ²⁺) ^a	1228.82 (MH+)		+41.41	2	2 (0)
K80	Y <u>K</u> NQLVLK	Di	517.69 (MH ²⁺) ^a	1034.36 (MH+)	1005.60 (MH+)	+28.76	1 (3)	1(7)
		Tri	524.03 (MH ²⁺) ^a	1047.04 (MH+)		+41.44	1	4
K86	NQLVL <u>K</u> R	Di	450.38 (MH ²⁺) ^a	899.74 (MH+)	871.06 (MH+)	+28.68	1 (4)	2 (6)
		Tri	456.91 (MH ²⁺) ^a	912.81 (MH+)		+41.75	2	3
K97	HFELGGE <u>K</u>	Mono	466.24 (MH ²⁺) ^a	931.46 (MH+)	916.45 (MH+)	+15.01	1 (91)	
	HFELGGE <u>K</u> K	Tri	544.11 (MH ²⁺) ^a	1087.21 (MH+)	1044.54 (MH+)	+42.67	1 (0)	1 (23)
K100	T <u>K</u> GAAIQF	Tri	877.44 (MH ⁺) ^a	877.44 (MH+)	835.46 (MH+)	+41.97	2 (61)	1 (81)

Supplemental Table S3. Additional methylated peptides identified in LC-MS/MS analysis of Rpl42

^a Representative masses. ^b MH⁺¹(mono).

^c Number of methylated (unmodified) peptide

Strain	Genotype	Source
SP976	h ⁹⁰ ade6-M210 leu1-32 ura4-D18	Nakayama et al. 2002a
JY741	h ⁻ ade6-M216 leu1-32 ura4-D18	From M. Yoshida
SPYB1259	h ⁹⁰ ade6-M210 leu1-32 ura4-D18 set13::kan ^r	This study
SPYB1257	h ⁹⁰ ade6-M216 leu1-32 ura4-D18 pREP1-EGFP-set13	This study
AS2142	h ⁹⁰ ade6-M210 leu1-32 ura4-D18 ∆set13::rep(T)	This study
AS2122	h ⁹⁰ ade6-M210 leu1-32 ura4-D18 rpl42 ^{K55R}	This study
AS2120	h ⁹⁰ ade6-M210 leu1-32 ura4-D18 rpl42 ^{P56Q}	This study
AS2151	h^{90} ade6-M210 leu1-32 ura4-D18 Δ gcn5::rep(T)	This study
AS2127	h ⁹⁰ ade6-M210 leu1-32 ura4-D18 leu1 ⁺ < <pdual-gfh1-rpl42< td=""><td>This study</td></pdual-gfh1-rpl42<>	This study
AS2130	h^{90} ade6-M210 leu1-32 ura4-D18 Δ set13::kan ^r leu1 ⁺ < <pdual-gfh1-rpl42< td=""><td>This study</td></pdual-gfh1-rpl42<>	This study
AS2183	$h^{-}ade6-M210\ leu1-32\ ura4-D18\ \Delta set13::rep(T)$	This study
AS2135	h ⁻ ade6-M210 leu1-32 ura4-D18 rpl42 ^{K55R}	This study
AS2134	h ⁻ ade6-M210 leu1-32 ura4-D18 rpl42 ^{P56Q}	This study
AS2155	$h^{-}ade6-M216\ leu1-32\ ura4-D18\ \Delta gcn5::rep(T)$	This study
AS2200	$h^{-}ade6$ -M216 leu1-32 ura4-D18 $\Delta gcn2$::rep(T)	This study
AS2212	$h^{-}ade6-M210\ leu1-32\ ura4-D18\ \Delta gcn2::rep(T)\ \Delta set13::rep(T)$	This study
AS2202	$h^{-}ade6$ -M210 leu1-32 ura4-D18 $\Delta gcn2$::rep(T) rpl42 ^{K55R}	This study
AS2208	$h^{-}ade6-M210\ leu1-32\ ura4-D18\ \Delta gcn2::rep(T)\ rpl42^{P56Q}$	This study
AS2210	$h^{-}ade6-M216\ leu1-32\ ura4-D18\ \Delta gcn2::rep(T)\ \Delta gcn5::rep(T)$	This study

Supplemental Table S4 S. pombe strains used in this study