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Abstract
We have been investigating a new behavior arbitra-

tion mechanism based on the biological immune sys-
tem. The ,behavior  arbitration mechanism and the bio-
logical immune system share certain similarities since
both systems deal with various sensory inputs (anti-
gens) through interactions among multiple competence
modules (lymphocytes and/or antibodies). We have
demonstrated the flexible arbitration abilities of our
proposed method, however, we have not shown a solu-
tion to the problem: how do we prepare an appropriate
repertoire of competence modules?

In this paper, in order to construct an appropri-
ate immune network without human intervention, we
try to incorporate an off-line metadynamics function
into our previously proposed mechanism. The metady-
namics function is an adaptation realized by varying
the structure of the immune network. To accomplish
this function, we use genetic algorithm with a devised
crossover operator. Finally, we verify our method by
carrying out simulations.

1 . Introduction
In recent years, behavior-based artificial intelligence

(AI) approaches have attracted much attention for
their robustness and flexibility against a dynamically
changing world. Brooks, a pioneer of the approaches,
has presented subsumption architecture for behavior
arbitration of autonomous robots [l, 21. He has ar-
gued that intelligence should emerge from mutual in-
teractions among competence modules (i.e. simple be-
havior/action), and interactions between a robot and
its environment. However, the behavior-based AI still
has the following open questions: (1) how do we con-
struct an appropriate arbitration mechanism among
multiple competence modules, (2) how do we prepare
appropriate competence modules.

One of the promising approaches to tackle the
above mentioned problems is a biologically-inspired
approach. Among biological systems, we particularly
focus on the immune system, since it has various in-
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teresting features such as immunological memory, im-
munological tolerance, pattern recognition, and so on
viewed from an engineering standpoint. Furthermore,
recent studies on immunology have clarified that the
immune system does not just detect and eliminate
non-self substances called antigen such as virus, can-
cer cells and so on; rather it plays important roles to
maintain its own system against dynamically chang-
ing environments through the interaction among lym-
phocytes and/or antibodies. Therefore, the immune
system would be expected to provide a new method-
ology suitable for dynamic problems dealing with un-
known/hostile environments rather than static prob-
lems.

From the above facts, we particularly focused on the
similarities between the behavior arbitration system
and the immune system, since both systems deal with
various sensory inputs (antigens) through interactions
among competence modules (lymphocytes and/or an-
tibodies). Based on this, we have proposed a new de-
centralized consensus-making system inspired by the
biological immune system in [3, 41. We have expected
that there would be an interesting AI technique suit-
able for dynamically changing environments by imi-
tating the immune system in living organisms. How-
ever, the determination of the appropriate repertoire
of competence modules (antibodies) still remains an
open question.

In this paper, we try to incorporate an of-line meta-
dynamics function into the previously proposed arti-
ficial immune network in order to autonomously con-
struct appropriate immune networks. The metady-
namics function would be regarded as an innovation
mechanism, which is realized by varying the structure
of the system. To accomplish the function, we use the
genetic algorithm with a devised crossover operation.
We carry out simulations and verify that the robot
with our proposed method successfully selects an ap-
propriate behavior by flexibly varying the priorities
among behavior modules.



2 . Overview of the biological immune
system

The basic components of the biological immune sys-
tem are macrophages, antibodies and lymphocytes. B-
lymphocytes are the cells maturing in bone marrow.
Roughly lo7 distinct types of B-lymphocytes are con-
tained in a human body, each of which has a distinct
molecular structure and produces “Y” shaped antibod-
ies from its surfaces. The antibody recognizes specific
antigens, which are the foreign substances that invade
living creatures. This reaction is often likened to a
hey  and keyhole relationship. For the sake of conve-
nience in the following explanation, we introduce sev-
eral terms from immunology. The key portion on the
antigen recognized by the antibody is called an epi-
tope (antigen determinant), and the keyhole portion on
the corresponding antibody that recognizes the anti-
gen determinant is called a parutope. Recent studies
in immunology have clarified that each type of anti-
body also has its specific antigen determinant called
an idiotope (see Fig.1).

Based on this fact, Jerne proposed a remarkable
hypothesis which he has called the “idiotypic network
hypothesis”, sometimes called “immune network hy-
pothesis” [5,  6, 71. This network hypothesis is the
concept that antibodies/lymphocytes are not just iso-
lated, namely they are communicating to each other
among different species of antibodies/lymphocytes. As
illustrated in Fig.1,  the stimulation and suppression
chains among antibodies form a large-scaled network
and works as a self and not-self recognizer.  Therefore,
the immune system is exp
decentralized processing.

ected  to provide new parallel
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Figure 1. Jerne’s idiotypic network hypothesis.

Furthermore, the structure of the network is not

fixed, but varies continuously. It flexibly self-organizes
according to dynamic changes of environment. This
remarkable function, called metadynamics function
[8,  9, lo],  is mainly realized by incorporating newly-
generated cells/antibodies and/or removing useless
ones. Fig.2 schematically shows the metadynamics
function. The new cells are generated by both gene
recombination in bone marrow and mutation in the
proliferation process of activated cells (the mutant is
called quasi-species). Although many new cells are
generated every day, most of them have no effect on
the existing network and soon die away without any
stimulation. Due to such enormous loss, the meta-
dynamics function works to maintain an appropriate
repertoire of cells so that the system can cope with
environment al changes. The metadynamics function
would be expected to provide feasible ideas to the en-
gineering field as an emergent system.

3 .

Immune Networks

Figure 2. Metadynamics function.

Behavior arbitration mechanism
based on the biological immune sys-
tem

3.1 Behavior arbitration problem and the
immune system

to
As described earlier, in the
construct an appropriate

among the prepared competence modules must be
solved. We have approached this problem from an im-
munological standpoint, more concretely with the use
of immune network architecture [3,  41.  In this section,
we discuss our proposed decentralized consensus- mak-
ing network based on the biological immune system.
Fig.3 schematically shows the behavior arbitration sys-
tem for an autonomous mobile robot and the immune
network architecture. As shown in this figure, current
situations detected by installed sensors work as multi-
ple antigens (or epitope), and a prepared competence
module (i.e. simple behavior) can be regarded as an
antibody (or B-lymphocyte), while the interaction be-
tween modules is represented by stimulation and sup-

behavior-based AI, how
arbitration mechanism
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pression  between antibodies. The basic concept of our
method is that the immune system equipped with an
autonomous mobile robot selects a competence module
(antibody) suitable for the detected current situation
(antigens) in a bottom-up manner. For convenience,
we have dubbed the autonomous mobile robot with the
immune network-based behavior selection mechanism
“immunoid”.

dynamically changing
environment

/ fi_ \ mobile robot- I
obstacle

destination

Behavior Control System,

competence module
(simple behavior)

Action Selection 1

(a) Behavior arbitration mechanism for an autonomous
mobile robot.

@:I’:. -+
antigens

stimulation

z
suppression

- Immune Network/

- antibody

(b) Immune network architecture.

Figure 3. Basic concept of our proposed method.

3.2 Description of antibody
We explain how we describe an antibody in de-

tail. To make the immunoid select a suitable anti-
body against the current antigens through interacting
among antibodies, we must look carefully into the de-
scription of the antibodies. To realize the above re-
quirements, we defined the description of antibodies
as follows: each antibody has one behavior/action to
be executed when it is selected. And we assign a pre-
condition to the paratope, and a disallowed condition
to the idiotope, respectively.

In addition, in order to represent the appropriate-
ness of each antibody, we introduce one state variable
called concentration of antibody.

3.3 Interaction between antibodies
We will now explain the interaction among antibod-

ies, that is, the basic principle of our immunological
consensus-making networks in detail. For the ease of
understanding, we use the example depicted in Fig.4.

Consider the listed two antibodies that respond to
the antigens Cl and C 2, respectively. These antigens
stimulate the antibodies, consequently the concentra-
tion of antibody 1 and 2 increases. If there is no in-
teraction between antibody 1 and antibody 2, these
antibodies will have the same concentrations. sup-
pose that the idiotope of antibody 1 and the paratope
of antibody 2 are the same. This means that anti-
body 2 is stimulated by antibody 1, and oppositely
antibody 1 is suppressed by antibody 2 (indicated by
the arrow). In this case, unlike the previous case, an-
tibody 2 will have higher concentration than antibody
1. As a result, antibody 2 is more likely to be selected.
This means that antibody 2 has higher priority over
antibody 1 in this situation. As observed in this ex-
ample, the interactions among the antibodies work as
a priority adjustment mechanism.

antibody1

~~l~~~I

antigens
antibody2

aq/W
,LL

c* mmc,

paratope idiotope

Ci :condition  i Ai :action i

+ stimulation

+ suDDression

Figure 4. Interaction among antibodies.

3.4 D y n a m i c s
The concentration of i-th antibody, which is de-

noted by ai, is calculated as follows:

dAi (t)

i

N ’ N

=
dt

CY~mjiaj(t)- CY):TT&~~ClI~(t)

j=l k=l

+Pmi-ki a$>,
)

(1)

ai(t + 1) =
1

1 + exp(0.5 - A@ + 1)) ’ (2)

where, in equation (l),  N is the number of antibod-
ies, and a and ,L!? are positive constants. mji and rni
denote affinities between antibody j and antibody i
( i.e. the degree of interaction), and between the de-
tected antigens and antibody i, respectively. The first
and second terms of the right hand side denote the
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stimulation and the suppression from other antibod-
ies, respectively. The third term represents the stimu-
lation from the antigen, and the fourth term the dis-
sipation factor (i.e. natural death) [7]. Equation (2)
is a squashing function to ensure the stability of the
concentration. In this study, selection of antibodies
is simply carried out on a roulette-wheed manner basis
according to the magnitude of concentrations of the
antibodies. Note that only one antibody is allowed to
be selected and project its corresponding behavior on
the world (i.e. winner-take-all manner).

4 . Off-line innovation mechanism
In order to solve what kinds of and how many anti-

bodies are necessary, we propose the off-line innovation
mechanism inspired by the metadynamics function us-
ing the genetic algorithm with a devised crossover op-
erator. Innovation is an adaptation realized by topo-
logical changes of the system, that is, the learning
based on selection[ll, 121.

In our method, it is assumed that a chromosome
represents a candidate of immune network, and each
gene in the chromosome corresponds to each antibody
in the immune network. The outline of the off-line
innovation mechanism is as follows:

1.

2.

3.

4.

Initial chromosomes (population size: M) are gen-
erated by random gene combination. Note that
the chromosome’s length, which represents the
number of antibodies, are allowed to be varied
because the number of appropriate antibodies can
not be predetermined.
Each individual, i.e. immune network-based be-
havior arbitration mechanism, is transplanted
into the robot and evaluated.
A&  individuals with higher fitness are selected
into the next generation (i.e. ’ elite preservation
strategy).
The genetic operations are performed in order to
generate offsprings. Process returns to 2.

In order to determine an appropriate repertoire au-
tonomously, we take up the mixing pot method [13]  as
a variant of crossover operator. Fig.5 schematically
shows the mixing pot method. Two parents, which
are picked from A&. elite, are put into different pots,
in this case, pot A and pot B. Note that the number of
antibodies of each parent can be different. Next all an-
tibodies in the two pots are poured into a mixing pot.
One antibody is taken out and put into pot 1 or pot
2 with equal probability l/2,  or a 50-50 chance. The
process is repeated until no antibody is in the mixing
pot. Finally, pot 2 is discarded and pot 1 becomes the
offspring.

In the simple mixing pot method, individuals, such
ad antibodies, with the same features are assumed not
to be poured into the same pot. This means that if
the parents are the same, then the offspring will be
exactly the same as the parents. On the other hand,
in the devised mixing pot method, antibodies with the
same features can coexist in pot 2. Notice that this can
not be allowed in pot 1. Due to this, the offspring cre-
ated by this genetic operator tend to consist
repertoire compared to parents.

of smaller

Figure 5. Mixing pot method.

5 Simulation
511 P r o b l e m

To confirm the feasibility of our proposed inno-
vation mechanism, we carry out some simulations.
The simulated environment contains a charging sta-
tion (CS), a recycle station (RS) and garbage stations
(GS). We assume that the immunoid has an initial
internal energy at the beginning of simulations and
consumes some energy Em with every step. This can
be similar to the metabolism in the biological system.
The immunoid can recharge its energy in the CS when
it has low energy. However, if the battery level in the
CS is 0, the immunoid can not refill its energy. To in-
crease the battery level in the CS, the immunoid must
carry the garbage from the GS to the RS, and then
transform the garbage into some energy in the CS.

In the simulation, the immunoid can detect its cur-
rent internal energy level I, battery level B in the CS,
and the amount of collected garbage G. For simplic-
ity, I, B and G are categorized into two states (high
or low). And it is capable of four kinds of behaviors:
go to GS and codlect  garbage, go to CS, go to RS and
none. The behaviors are predefined in the form of
an if-then rule because we focus on behavior arbitra-
tion. The detailed descriptions of epitope, paratope,
idiotope and behavior are shown in Fig.6.
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The aim of the immunoid is to survive as long as
possible, that is, not to run out of its energy. To
realize the aim, the immunoid should select an ap-
propriate behavior by flexibly varying the priorities
among behavior modules. In other words, the robot
with a fixed-priority-based arbitration mechanism like
the subsumption architecture can not cope with this
problem.

In the innovation mechanism, population A4, n/r,
and mutation rate is set to 30, 6 and 0.1, respectively.
Additionally, fitness for each immune network is de-
fined by the sum of resultant lifetime in 6 different
initial conditions. Each initial condition has differ-
ent initial values of 1 (is 50 or 100) B (is 0 or 50 or
100) and G (is 0 or 50 or 100). Since it is assumed
that maximum lifetime in each initial condition is 500,
maximum fitness is 3000 (6 x 500).

epitope, paratope, idiotope
Internal energy level : High (1.H)

: Low (1.L)
Collected garbage : Much (G.M)

: Little (G.L)
Battery level : High (B.H)

: Low (B.L)

Action

Go to garbage station (Gs)
Go to charging station (Cs)
Go to recycle station (Rs)
None (N)

Figure 6. Description of epitope, paratope, id-
iotope and action.

5.2 R e s u l t s
The transitions of the fitness with the simple and

the devised mixing pot method are represented in
Fig.7 (a) and (b). From these figures, maximum fitness
appears at the 35th generation in the simple method
and at the 18th generation in the devised method.
Fig.8 (a) and (b) are the transitions of the number of
antibodies under the same condition of Fig.7 (a) and
(b), respectively. Interestingly, in the devised mix-
ing pot method, the number of antibodies in immune
networks gradually decreases, and finally settles to a
smaller value than in the simple method. In summary,
our devised method finds the appropriate immune net-
work not only faster but also with a smaller number
of antibodies than the simple method.

Fig.9 illustrates an obtained immune network with
best fitness in 100 generation using the devised mixing
pot method. The trajectory of the immunoid by the
immune network in a given initial condition appears
in Fig.10.  The initial condition is that the immunoid
equipped with maximum energy level has no garbage,
and there is no battery in the CS. As shown in the
figure, first, the immunoid goes to the GS in order to
collect the garbage, and goes to RS to translate it into
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Figure 7. Transitions of the fitness.

battery energy in the CS. As a result, since the im-
munoid almost runs out of its internal energy and the
CS has enough energy, it goes to the CS to fulfill its
energy. In this way, the immunoid can move around
the environment without running out of its internal
energy. Surprisingly, such a flexible behavior arbitra-
tion is realized by the small number of behavior prim-
itives. Therefore, we can understand that the devised
mixing pot operator works well to select appropriate
repertoire.

6 . Conclusions and further work
In this paper, we proposed an off-line metadynam-

its  mechanism for our immune network-based behavior
arbitration by the genetic algorithm with the devised
crossover operation. And we applied it to the behavior
arbitration for an autonomous mobile robot in a simu-
lated environment and validated our proposed method.

However, in the biological immune system, the
structure of the network varies continuously. In further
work, we must consider an on-line innovation mecha-
nism inspired by the biological immune system.
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