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Abstract

Distributed intrusion detection systems have some
advantages over centralized systems, such as scalabil-
ity, resist subversion, and graceful degradation. With
respect to resist subversion, however, self-monitoring
is a difficult problem. One possibility is that each
intrusion detection system is checked periodically by
others.

In this paper, we propose mutual tests between
intrusion detection system and mobile agent using
immunity-based diagnosis. Some simulation results
show that the credibility of normal intrusion detection
system remains stable near 1, otherwise decreases to 0,
and then corrupted ones are identified. Furthermore,
we make sure that the diagnostic capability depends
on some parameters.
Keywords: Intrusion detection system, Immunity-
based diagnosis, Mobile agent, Self-monitoring

1 Introduction

The goal of intrusion detection is to identify, prefer-
ably in real time, unauthorized use, misuse, and abuse
of computer systems by both system insiders and ex-
ternal penetrators [1]. In the last few years, the need
of intrusion detection system clearly increases with the
growing number of network services, and then a large
number of intrusion detection systems have been pro-
posed (e.g., [2])

In order to design and build intrusion detection sys-
tem, some researchers have drawn inspiration from the
biological immune system. Forrest et al. have incorpo-
rated many properties of natural immune systems (dis-
tributed computation, error tolerance, adaptation and
so on) into intrusion detection system [3, 4]. Spafford
et al. also have developed the distributed intrusion de-
tection system using autonomous agents regarded as
immune cells [5, 6]. Mobile agents have been employed
in intrusion detection system just as immune cells can
circulate through the body [7, 8].

The intrusion detection systems inspired by the
immune system are categorized into distributed sys-
tem. Distributed intrusion detection systems have
some advantages over centralized systems, such as
scalability, resist subversion, and graceful degradation
[6]. With respect to resist subversion, however, self-
monitoring is a difficult problem. In other words, cor-
rupted intrusion detection system cannot identify il-
legitimate use correctly; therefore it is necessary to
discern which ones can be faulty. Although Spafford
et al. suggested one possibility with each monitor-
ing agent being checked periodically by several others,
they achieved no detailed examination [6].

In this paper, we propose mutual tests using an
immunity-based diagnosis in distributed intrusion de-
tection system. The original immunity-based diagnos-
tic model has been proposed by Ishida who is one of
authors [9, 10]. The immune system can be considered
as fully distributed diagnosis, where a large number of
immune cells detect and eliminate non-self by stimu-
lating and suppressing other cells. The diagnosis is
performed by mutual tests among units and dynamic
propagation of active state.

Furthermore, mobile agents contribute to the mu-
tual tests in the diagnosis. In conventional approaches
[7, 8], mobile agents directly monitor host computers,
while mobile agents in our method observe intrusion
detection systems. Our mobile agent acts as an addi-
tional module for existing intrusion detection systems.

To verify the feasibility of our diagnosis, we carry
out some simulations. The result shows that the cred-
ibility of normal intrusion detection system remains
stable near 1, otherwise decreases to 0, and then cor-
rupted ones are determined. In addition, we execute
the diagnosis changing two parameters: number of mo-
bile agents and number of intrusion detection system’s
rules. We confirm what effects these parameters have
on the diagnostic capability.
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Figure 1: Simulated distributed intrusion detection
system.

2 Distributed intrusion detection sys-
tem with mobile agents

2.1 Simulated intrusion detection system

For easy performance analyses, the immunity-based
diagnosis is applied to a simulated distributed intru-
sion detection system. Figure 1 illustrates the sim-
ulated system, where N intrusion detection systems
can monitor the corresponding host computer using
some rules. Real intrusion detection systems as show
in Fig. 2 possess a lot of complicated rules, which are
collected in some files according to service (for exam-
ple, dns.rules file corresponding to DNS service). The
rules are simplified by a pair of label (A, B, C, …)
and data (0 or 1). The total number of rules is de-
fined by L, and each intrusion detection system has
Lh(≤ L) rules on average because each host provides
different service. If Lh = L, then distributed intrusion
detection system become homogeneous, otherwise het-
erogeneous.

We suppose that corrupted intrusion detection sys-
tem includes some wrong rules represented by inver-
sion of data (0 or 1). In Fig.1, although C:1 and W:0
are correct pairs, the corrupted intrusion detection
system IDSN has two inverted rules. Each simulation
starts with the condition where there are Nf (≤ N)
corrupted intrusion detection systems.

2.2 Mobile agent

Each mobile agent with a piece of rules can migrate
from host to host in order to check intrusion detection
system mutually as depicted in Fig.3. The average
number of agent’s rules is represented by La(≤ L).
We assume that there are checks among agents on
the same host (e.g., Ma1 and Ma2), while there is no
test among hosts (e.g., IDS1 and IDS2) because mo-
bile agent exists on behalf of communication between
hosts. We will explain a concrete test outcome in 3.2.

At the beginning of simulation, each intrusion de-
tection system creates some mobile agents by duplicat-
ing a part of the rules. As a result, normal intrusion
detection system bears fault-free mobile agents, while
corrupted intrusion detection system has faulty mobile

[root@wata root]# ls /etc/snort/
RCS                     local.rules       snmp.rules
attack-responses.rules  misc.rules        snort.conf
backdoor.rules          multimedia.rules  snort_tutkie.conf
bad-traffic.rules       mysql.rules       sql.rules
chat.rules              netbios.rules     telnet.rules
classification.config   nntp.rules        tftp.rules
ddos.rules              oracle.rules      virus.rules
deleted.rules           other-ids.rules   web-attacks.rules
dns.rules               p2p.rules         web-cgi.rules
dos.rules               policy.rules      web-client.rules
experimental.rules      pop3.rules        web-coldfusion.rules
exploit.rules           porn.rules        web-frontpage.rules
finger.rules            reference.config  web-iis.rules
ftp.rules               rpc.rules         web-misc.rules
icmp-info.rules         rservices.rules   web-php.rules
icmp.rules              scan.rules        x11.rules
imap.rules              shellcode.rules
info.rules              smtp.rules
[root@wata root]# head /etc/snort/web-cgi.rules 
# (C) Copyright 2001,2002, Martin Roesch, Brian Caswell, et al.
#    All rights reserved.
# $Id: web-cgi.rules,v 1.56 2002/08/18 20:28:43 cazz Exp $
#--------------
# WEB-CGI RULES
#--------------
#

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI 
HyperSeek hsx.cgi directory traversal attempt"; uricontent:"/hsx.cgi"; 
content:"../../"; content:"%00"; flow:to_server,established; 
reference:bugtraq,2314; reference:cve,CAN-2001-0253; 
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI 
HyperSeek hsx.cgi access"; uricontent:"/hsx.cgi"; flow:to_server,
established; reference:bugtraq,2314; reference:cve,CAN-2001-0253; 
classtype:web-application-activity; sid:1607;  rev:3;)
[root@wata root]# 

Figure 2: Example of snort rules [2].
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Figure 3: Mutual tests using mobile agents.

agents with some inverted rules (for example, MaM in
Fig.3). Note that false mobile agents misdiagnose nor-
mal intrusion detection system.

3 Immunity-based diagnosis

3.1 Distributed diagnosis model

The distributed diagnosis models inspired by the bi-
ological immune system have been proposed by Ishida
[9, 10]. The distributed diagnosis is performed by mu-
tual tests among units and dynamic propagation of
active states. In the model, each unit has the capa-
bility of testing other units, and being tested by the
others as well. A state variable Ri indicating the cred-
ibility of unit is assigned to each unit and calculated
as follows:

dri(t)
dt

=
∑

j

TjiRj +
∑

j

TijRj− 1
2

∑

j∈{k:Tik 6=0}
(Tij +1),

(1)



Ri(t) =
1

1 + exp(−ri(t))
, (2)

where the credibility Ri ∈ [0, 1] is a normalization of
ri ∈ (−∞,∞) using a sigmoid function. In equation
(1), Tij denotes binary test outcome from unit i to j
as defined in 3.2.

The diagnosis represented by the differential equa-
tion (1) has two characteristics. First, the credibil-
ity of tested unit i is updated by the sum of the test
value weighted by the credibility of testing unit j. The
weighted test value leads to neglect the test outcome
of false unit with low credibility. Secondly, the credi-
bility of unit i is evaluated not only from the opinions
of other testing units, but also from the opinions of
what the unit said to the other units. The former
corresponds to the first term of the right-hand side of
equation (1), and the latter to the second and third
term. We call the latter reflection effect. The reflec-
tion effect is somewhat similar to the situation that if
you criticize a highly respected person, it affects your
own credit.

3.2 Test outcome

We explain how units, namely, both IDS and mo-
bile agent, can produce their test outputs. The test
outcome is assigned to -1, 0 or 1 according as whether
or not rules are the same:

Tji =





1 if all rules match
−1 if one or more mismatches exist
0 if all rules are not comparable
−1/0/1 if unit j is abnormal

.

(3)
For example, in Fig. 3, the test outcome between

Ma1 and IDS1 becomes 1 with the agreement of both
rules A and C, the output between Ma2 and IDS1 is 0
because Ma2 rules are not comparable with IDS1 ones,
and corrupted MaM and IDSN replay unstably.

4 Simulation

4.1 False positive and false negative

The feasibility of the immunity-based diagnosis is
verified by some simulations. In each simulation step,
we record not only the credibility of intrusion detection
system but also two evaluation indexes, that is, false
positive rate α and false negative rate β as follows:

α =
N low

t

N −Nf
, (4)
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Figure 4: Transition of the average credibility Ri for
normal and corrupted IDS over 50 trials.

Table 1: Parameters list.

Description of variable
Ri(0) Initial value of credibility
ri(0) Initial value of intermediate variable
N Number of IDSs (hosts)
Nf Number of corrupted IDSs
M Number of mobile agents
L Total number of rules
Lh Average number of IDS’s rules
La Average number of agent’s rules

β =
Nhigh

f

Nf
, (5)

where N−Nf denotes the number of normal intrusion
detection systems, and Nf the number of corrupted
ones. N low

t is the number of normal intrusion detec-
tion systems with the credibility of not more than 0.8
(Ri ≤ 0.8), while Nhigh

f is the number of corrupted
intrusion detection systems with the credibility of not
less than 0.2 (Ri ≥ 0.2). The false positive means
that the diagnosis regards normal as abnormal, while
the false negative results from identifying abnormal as
normal.

4.2 Results

Figure 4 illustrates transition of the average cred-
ibility for normal and corrupted intrusion detection
system over 50 trials. In this simulation, the pa-
rameters listed in Table 1 are fixed: Ri(0) = 1.0,
ri(0) = 1.0, N = 50, Nf = 50, M = 300, L = 5000,
Lh = 500 and La = 50. The result shows that the
credibility of normal intrusion detection system re-
mains stable near 1, otherwise decreases to 0, and then
corrupted one is determined.

Other simulations are carried out with changes of
two parameters, that is, the number of mobile agents
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Figure 5: Average false positive/negative rate (α and
β) vs. number of mobile agents (M).

(M) and the average number of intrusion detection
system’s rules (Lh). Figure 5 presents average false
positive rate and false negative rate after 30 steps over
50 trials, changing M and Lh. From these results, by
the more mobile agents an intrusion detection system
is mutually tested, the more precisely its credibility
can be calculated. In terms of Lh, the more com-
mon rules all intrusion detection systems have, namely,
the more homogeneous all intrusion detection systems
become, the more easily corrupted ones will be de-
tectable.

These results also demonstrate that the false nega-
tive rate β tends to be inferior to the false positive rate
α. The reason is probably that some corrupted agent
that a corrupted intrusion detection system produces
as alter ego at the beginning of simulation can increase
the credibility of the parental corrupted intrusion de-
tection system. We conclude that these parameters
have important effects on the diagnostic capability.

5 Conclusions and further work

In this paper, we proposed mutual tests between
intrusion detection system and mobile agent using the
immunity-based diagnosis. The result shows that the
credibility of normal intrusion detection system re-
mains stable near 1, otherwise decreases to 0, and then
corrupted ones are identified. Furthermore, we con-

firm that the diagnostic capability depends on both
the number of mobile agents and the number of intru-
sion detection system’s rules.

In further work, we will examine the diagnostic ca-
pability in more detail and incorporate the immunity-
based diagnosis to a real distributed intrusion detec-
tion system.
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