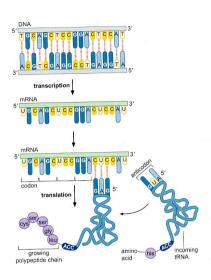
生物学基礎||| /基礎分子生物学

第10回 12/14/10

前回のクイズ

左図から読み取れる事象を挙げよ。


5'→3'

Sense strand Antisense strand

> = Coding strand TをUにすればmRNAと同じ

一方のみ使う 5'→3'コドンと 3'←5'アンチコドン 3通りの読み枠

Leu tRNAとHis tRNA tRNA 3'CCA アミノ酸のみが伸長

1959年ノーベル生理学・医学賞

RNAとDNAの合成に関する研究

A.Kornberg

DNAポリメラーゼ: DNA pol I

S.Ochoa

RNAポリメラーゼ: PNPase

1959年 S.Weiss & J. Hurwitz

DNA dependent RNA polymaraseの発見

tRNAの特徴と役割

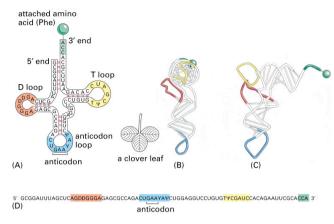


Figure 6-52. Molecular Biology of the Cell, 4th Edition.

75~95nt, プロセシング、CCA-3'OH、修飾塩基 アンチコドン、クローバー葉モデル、L字構造

1968年ノーベル生理学・医学賞

遺伝情報の解読と そのタンパク質合成への役割

M.W.Nierenberg

H.G.Khorana

R.W.Holley

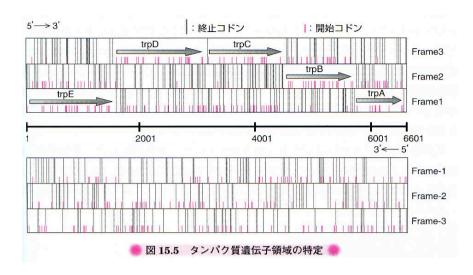
V. Ingram: 鎌形赤血球, M. Nierenberg: 遺伝暗号解読、M. Staehelin: tRNA研究 1963 Symposium on Synthesis and Structure of Macromolecules @CSHL

遺伝暗号の特性

コドン:アミノ酸に対応するTriplet non-overlapping commaless 縮重(同義コドン) 普遍的(一部例外あり)

TABLE 2-3 The Genetic Code

		second	position		
11000	U	C	Α	G	
t	UUU Phe UUC UUA	UCU UCC UCA	UAU Tyr UAC UAA stop	UGU Cys UGC Stop	U C A
	UUG Leu	UCG	UAG stop	UGG Trp	G
sition	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC CAA GIn	CGU CGC CGA CGG	U C A G
first position	AUU AUC IIe AUA AUG Met	ACU ACC ACA Thr ACG	AAU Asn AAC Asn AAA Lys	AGU AGC AGA AGG	third position
G	GUU GUC GUA Val GUG	GCU GCC GCA Ala GCG	GAU GAC GAA GAG	GGU GGC GAA GGG	U C A G


開始コドン:

終止コドン:

ORF(Open-reading frame)

,

突然変異

1) 塩基置換

変異: UCG \rightarrow CCG

 $Ser \rightarrow Pro$

変異: UCG → UAG

Ser → Stop

変異: UCG \rightarrow CCU

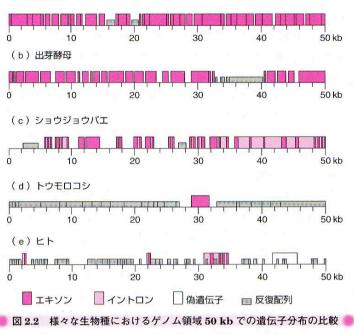
 $\mathsf{Ser} \ \to \ \mathsf{Ser}$

3)

変異

2) 変異

UCGCCGACGG...


SerProThr

+1: UACGCCGACGG..

ThrAlaAsp

-1: UGCCGACGG....
CysArgArg

(a)大腸菌

サプレッション (抑圧: Suppression)

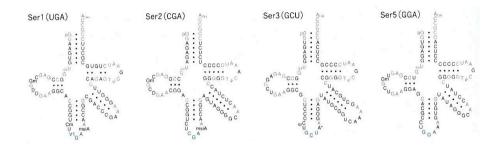
サプレッサー変異 (Suppressor mutation)

変異により失われた遺伝子機能を回復させる変異のうち、 最初に受けた変異はそのままで別の位置に生じたもの

Amber変異:遺伝子内コドンがナンセンス(終止コドン)UAGに変異 「

Amber Suppressor:アンチコドンの変異によりUAGに Serなどを挿入するtRNA変異

12


tRNAシステム

遺伝暗号の縮重(または縮退: Degeneracy)

61種類のTriplet → 20種類のアミノ酸

同一のアミノ酸の指定するコドン:同義コドン

同一アミノ酸を受容するtRNA: isoacceptor tRNA

アミノアシル化反応

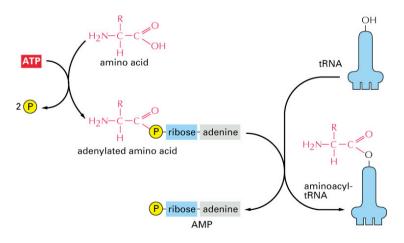
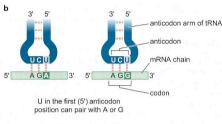
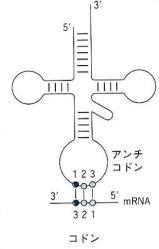


Figure 6-56. Molecular Biology of the Cell, 4th Edition.

ゆらぎ (Wobble) 対合

61種類のコドン →


[大腸菌] 45種類のtRNA


(41種のアンチコドン)

78遺伝子(40tRNAオペロン)

[マイコプラズマ、葉緑体]

約30種類のtRNA

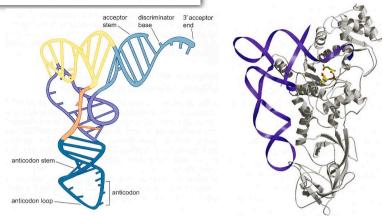
13

15

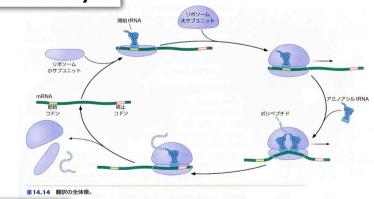
tRNA へのアミノ酸結合

アミノアシルtRNA合成酵素:アミノ酸 アミノアシルtRNA合成酵素:tRNA

TABLE 14-1 Classes of Aminoacyl tRNA Synthetases*


Class II	Quarternary Structure	Class I	Quarternary Structure
Gly	$(\alpha_2\beta_2)$	Glu	(α)
Ala	(α_4)	Gln	(α)
Pro	(α_2)	Arg	(α)
Ser	(α_2)	Cys	(α_2)
Thr	(α_2)	Met	(α_2)
His	(α_2)	Val	(α)
Asp	(α_2)	lle	(α)
Asn	(α_2)	Leu	(α)
Lys	(α_2)	Tyr	(α)
Phe	$(\alpha_2\beta_2)$	Trp	(α)

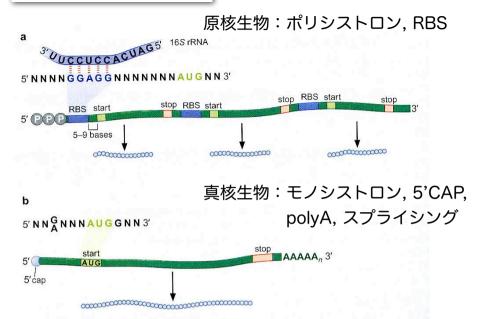
Source: Data from Delarue M. 1995. Aminoacyl, tRNA synthetases. Current Opinion in Structural Biology 5: 48-55, adapted from Table 1.


*Class I enzymes are generally monomeric, whereas class II enzymes are dimeric or tetrameric, with residues from two subunits contributing to the binding site for a single tRNA. α and β refer to subunits of the tRNA synthetases and the subscripts indicate their stoichiometry.

14

tRNA のアイデンティティー

Ribosome Cycle



Polysome

原核生物と真核生物のmRNA構造比較

17

18

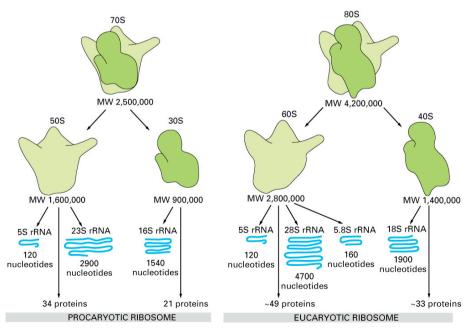


Figure 6-63 part 1 of 2. Molecular Biology of the Cell, 4th Ed Figure 6-63 part 2 of 2. Molecular Biology of the Cell, 4th Edition.

20

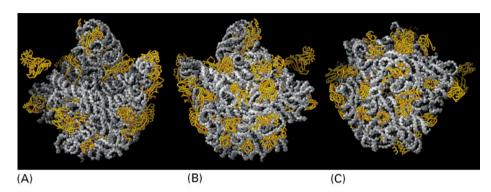
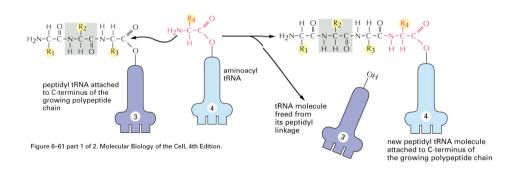



Figure 6-68. Molecular Biology of the Cell, 4th Edition.

Peptidyl転移反応

RibosomeのtRNA結合部位

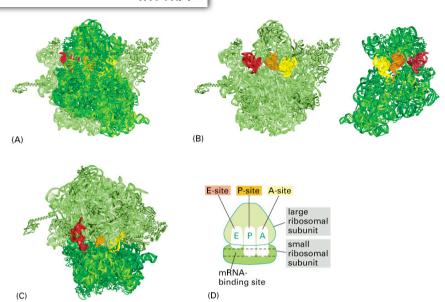


Figure 6-64 part 2 of 2. Molecular Biology of the Cell, 4th Edition.

翻訳伸長反応の概要

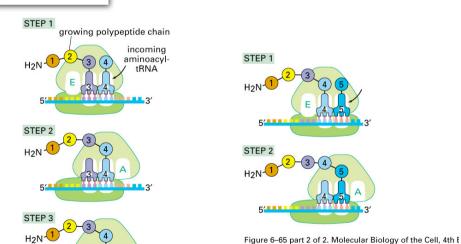


Figure 6-65 part 1 of 2. Molecular Biology of the Cell, 4th Edition.

22